广东拓斯达科技股份有限公司 投资者关系活动记录表

编号: 2025007

		新 寸: 2023007
	□特定对象调研	□分析师会议
投资者关系	□媒体采访	□业绩说明会
	□新闻发布会	□路演活动
活动类别	☑现场参观	
	 □电话/网络会议	
参与单位名称及	博时基金、财通证券、财信证券、大兴华旗资产管理、方正证	
人员姓名	券、莞民投集团、广东冠达泰泽私募基金公司、广东恒昇基金 管理有限公司、广东林锐基金、广东天量私募证券投资基金管	
	理有限公司、广州泽恩投资、国盛证券、国泰海通证券、杭州	
	图灵资产管理有限公司、恒键资产、上海九方云智能科技有限 公司、申万宏源、深圳佰运金融投资公司、深圳海衍、深圳坤	
	西基金管理有限公司、深圳市前海诚域私募基金管理有限公	
		自有限公司、胜晖基金、泰科富曼基金、
	大风证券、粤民投(深圳 河证券、中金公司等 38) 私募证券基金、招商证券、中国银 名投资者。
时间	2025年9月12日 9:30-12:00	
地点	公司会议室	
上市公司	副总裁、董事会秘书:谢仕梅	
接待人员姓名	AI 产品应用部: 曾逸	
	1、2025 年上半年公司产	"品类业务情况
	 答: 2025 年上半年,公	司持续推进"聚焦产品,收缩项目" 司持续推进"聚焦产品,收缩项目"
	 的战略转型,深化业务组	吉构调整。报告期内,公司产品类业务
投资者关系活动	规模稳步增长,营业收入	同比增加 22.66%, 毛利率为 38.83%,
主要内容介绍	同比小幅增长。工业机制	器人业务营业收入同比增长 22.55%,
	其中自产多关节工业机器	器人营业收入同比增长80.86%,直角
	坐标机器人营业收入同日	北增长 21.01%; 注塑机、配套设备及

自动供料系统营业收入同比增长 29.64%; 数控机床业务营业收入同比增长 83.74%。

2、公司首款人形机器人产品情况

答:公司首款人形机器人产品"小拓"基于公司与智谱共同构建的具身模型,可实现对复杂任务的自主推理与决策。依托对工业客户的场景理解与技术积累,"小拓"已在注塑车间完成多轮验证。通过集成 3D 相机与 AI 视觉检测系统,它能够实时识别注塑件良率,并自主完成装盘等工序,实现从检测到操作的全流程自动化。"小拓"的发布不仅体现出人形机器人在工业场景的应用潜力,也展现出公司"技术—制造—产品—场景"于一体的闭环生态能力。

3、人形机器人发展对于数控机床业务的影响

答:人形机器人持续往智能化、高性能化方向发展,对于设计、 材料、制造工艺都提出了很大挑战,如关节臂、手臂支架、髋 关节架等需要大量空间结构复杂的零部件,这些部件通常具有 多曲面、高精度特征,五轴联动数控机床能够实现一次装夹完 成多面加工,减少误差累积,满足相关部件精度要求,简化零 部件的装配过程,并提升结构可靠性。公司DMU/GMU400、GMU600 机型在人形机器人领域零部件加工展现出独特的优势和竞争 力。

4、公司在具身智能方面的后续布局

答:公司会围绕控制器、伺服驱动、视觉技术三大底层核心技术持续投入,构建"场景+数据+AI"多驱动体系。依托运动控制及制造业场景数据优势,探索具身智能与工业场景融合,打造 IT 与 OT 协同的创新生态。强化与 AI 大模型厂商合作,推动智能装备在结构化工业场景的算法迭代与产业化应用,实现机器人从"能干活"向"会干活"转变,打造"最懂工艺的智能机器人",推动具身智能生态化、商业化、产业化成功落地。

5、公司智能运动控制系统情况

答:公司新一代面向工业应用场景的 X5 运动控制器硬件经过 多轮研发迭代,实现了可靠性的商用产品化;底层软件平台实

	现了虚拟化与软硬件解耦,接入了多种主流人工智能算力平	
	台,提供实时 RGM 控制接口,为 AI 数据采集与应用开发提供	
	了良好的支撑; 应用软件平台采用云边端架构, 对外开放了	
	500 余组底层功能接口,并与主流 AI 大模型与仿真系统深度	
	集成,实现了视觉免注册引导拆码垛、双臂机器人及轮式人形	
	机器人小脑端控制、端到端智能装配等高端应用。	
74. 体泽光 (49 左)	エ	
附件清单(如有)	无	
日期	2025年9月12日	